'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { b(x, y) -> c(a(c(y), a(0(), x))) , a(y, x) -> y , a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0())} Details: We have computed the following set of weak (innermost) dependency pairs: { b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , a^#(y, x) -> c_1() , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} The usable rules are: { b(x, y) -> c(a(c(y), a(0(), x))) , a(y, x) -> y , a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0())} The estimated dependency graph contains the following edges: {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} ==> {a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} ==> {a^#(y, x) -> c_1()} {a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} ==> {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} We consider the following path(s): 1) { b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} The usable rules for this path are the following: { b(x, y) -> c(a(c(y), a(0(), x))) , a(y, x) -> y , a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0())} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { b(x, y) -> c(a(c(y), a(0(), x))) , a(y, x) -> y , a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()) , b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} Details: We apply the weight gap principle, strictly orienting the rules {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} Details: Interpretation Functions: b(x1, x2) = [1] x1 + [1] x2 + [0] c(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] b^#(x1, x2) = [1] x1 + [1] x2 + [8] c_0(x1) = [1] x1 + [1] a^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(x, y) -> c(a(c(y), a(0(), x)))} and weakly orienting the rules {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(x, y) -> c(a(c(y), a(0(), x)))} Details: Interpretation Functions: b(x1, x2) = [1] x1 + [1] x2 + [8] c(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] b^#(x1, x2) = [1] x1 + [1] x2 + [8] c_0(x1) = [1] x1 + [0] a^#(x1, x2) = [1] x1 + [1] x2 + [8] c_1() = [0] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a(y, x) -> y} and weakly orienting the rules { b(x, y) -> c(a(c(y), a(0(), x))) , b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(y, x) -> y} Details: Interpretation Functions: b(x1, x2) = [1] x1 + [1] x2 + [4] c(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [1] b^#(x1, x2) = [1] x1 + [1] x2 + [8] c_0(x1) = [1] x1 + [0] a^#(x1, x2) = [1] x1 + [1] x2 + [6] c_1() = [0] c_2(x1) = [1] x1 + [8] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} Weak Rules: { a(y, x) -> y , b(x, y) -> c(a(c(y), a(0(), x))) , b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} Weak Rules: { a(y, x) -> y , b(x, y) -> c(a(c(y), a(0(), x))) , b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { c_0(2) -> 2 , c_0(4) -> 2 , a_0(4, 2) -> 9 , a_0(4, 4) -> 9 , 0_0() -> 4 , 0_0() -> 9 , b^#_0(2, 2) -> 5 , b^#_0(2, 4) -> 5 , b^#_0(4, 2) -> 5 , b^#_0(4, 4) -> 5 , c_0_0(8) -> 5 , a^#_0(2, 2) -> 7 , a^#_0(2, 4) -> 7 , a^#_0(2, 9) -> 8 , a^#_0(4, 2) -> 7 , a^#_0(4, 4) -> 7} 2) { b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0())) , a^#(y, x) -> c_1()} The usable rules for this path are the following: { b(x, y) -> c(a(c(y), a(0(), x))) , a(y, x) -> y , a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0())} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { b(x, y) -> c(a(c(y), a(0(), x))) , a(y, x) -> y , a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()) , b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0())) , a^#(y, x) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules {b(x, y) -> c(a(c(y), a(0(), x)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(x, y) -> c(a(c(y), a(0(), x)))} Details: Interpretation Functions: b(x1, x2) = [1] x1 + [1] x2 + [1] c(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] b^#(x1, x2) = [1] x1 + [1] x2 + [0] c_0(x1) = [1] x1 + [1] a^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} and weakly orienting the rules {b(x, y) -> c(a(c(y), a(0(), x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(x, y) -> c_0(a^#(c(y), a(0(), x)))} Details: Interpretation Functions: b(x1, x2) = [1] x1 + [1] x2 + [0] c(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] b^#(x1, x2) = [1] x1 + [1] x2 + [8] c_0(x1) = [1] x1 + [1] a^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(y, x) -> c_1()} and weakly orienting the rules { b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , b(x, y) -> c(a(c(y), a(0(), x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(y, x) -> c_1()} Details: Interpretation Functions: b(x1, x2) = [1] x1 + [1] x2 + [0] c(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] b^#(x1, x2) = [1] x1 + [1] x2 + [8] c_0(x1) = [1] x1 + [1] a^#(x1, x2) = [1] x1 + [1] x2 + [1] c_1() = [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a(y, x) -> y} and weakly orienting the rules { a^#(y, x) -> c_1() , b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , b(x, y) -> c(a(c(y), a(0(), x)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a(y, x) -> y} Details: Interpretation Functions: b(x1, x2) = [1] x1 + [1] x2 + [11] c(x1) = [1] x1 + [0] a(x1, x2) = [1] x1 + [1] x2 + [3] 0() = [1] b^#(x1, x2) = [1] x1 + [1] x2 + [8] c_0(x1) = [1] x1 + [2] a^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} Weak Rules: { a(y, x) -> y , a^#(y, x) -> c_1() , b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , b(x, y) -> c(a(c(y), a(0(), x)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()) , a^#(y, c(b(a(0(), x), 0()))) -> c_2(b^#(a(c(b(0(), y)), x), 0()))} Weak Rules: { a(y, x) -> y , a^#(y, x) -> c_1() , b^#(x, y) -> c_0(a^#(c(y), a(0(), x))) , b(x, y) -> c(a(c(y), a(0(), x)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { c_0(2) -> 2 , c_0(4) -> 2 , a_0(4, 2) -> 9 , a_0(4, 4) -> 9 , 0_0() -> 4 , 0_0() -> 9 , b^#_0(2, 2) -> 5 , b^#_0(2, 4) -> 5 , b^#_0(4, 2) -> 5 , b^#_0(4, 4) -> 5 , c_0_0(8) -> 5 , a^#_0(2, 2) -> 7 , a^#_0(2, 4) -> 7 , a^#_0(2, 9) -> 8 , a^#_0(4, 2) -> 7 , a^#_0(4, 4) -> 7 , c_1_0() -> 7 , c_1_0() -> 8}